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Human pluripotent stem cell-based in vitro models that reflect human
physiology have the potential to reduce the number of drug failures
in clinical trials and offer a cost-effective approach for assessing chem-
ical safety. Here, human embryonic stem (ES) cell-derived neural pro-
genitor cells, endothelial cells, mesenchymal stem cells, and microglia/
macrophage precursors were combined on chemically defined poly-
ethylene glycol hydrogels and cultured in serum-free medium to
model cellular interactions within the developing brain. The pre-
cursors self-assembled into 3D neural constructs with diverse neuro-
nal and glial populations, interconnected vascular networks, and
ramified microglia. Replicate constructs were reproducible by RNA
sequencing (RNA-Seq) and expressed neurogenesis, vasculature de-
velopment, andmicroglia genes. Linear support vector machines were
used to construct a predictive model from RNA-Seq data for 240
neural constructs treatedwith 34 toxic and 26 nontoxic chemicals. The
predictive model was evaluated using two standard hold-out testing
methods: a nearly unbiased leave-one-out cross-validation for the 60
training compounds and an unbiased blinded trial using a single hold-
out set of 10 additional chemicals. The linear support vector produced
an estimate for future data of 0.91 in the cross-validation experiment
and correctly classified 9 of 10 chemicals in the blinded trial.

organoid | machine learning | tissue engineering | differentiation |
toxicology

There is a pressing need for improved methods to assess the
safety of drugs and other compounds (1–5). Success rates for

drug approval are declining despite higher research and develop-
ment spending (6), and clinical trials often fail due to toxicities that
were not identified through animal testing (7). In addition, most of
the chemicals in commerce have not been rigorously assessed for
safety despite growing concerns over the potential impact of
industrial and environmental exposures on human health (2–5).
Animal models are costly, time consuming, and fail to recapitulate
many aspects of human physiology, which has motivated agencies
such as the National Institutes of Health (NIH) and the US En-
vironmental Protection Agency (EPA) to initiate programs that
emphasize human cellular approaches for assessing the safety
of drugs (1) and environmental chemicals (2, 3). In vitro cel-
lular models that accurately reflect human physiology have the
potential to improve the prediction of drug toxicity early in the
development pipeline (1) and would provide a cost-effective ap-
proach for testing other sources of chemical exposure, including
food additives, cosmetics, pesticides, and industrial chemicals (2–5).
The human brain is particularly sensitive to toxic insults during

development and early childhood (8), and there is growing con-
cern that exposure to environmental chemicals may be linked to
the rising incidence of neurodevelopmental disorders worldwide
(4). Human brain development is mediated by highly coordinated
cellular interactions between functionally distinct cell types that
include neurons, glia, blood vessels, and microglia (9–15), each of

which may be involved in neurotoxicity mechanisms (16–18). The
cellular diversity of the developing brain complicates efforts to
assess developmental neurotoxicity in vitro, because toxins might
target numerous distinct cell types or cellular interactions and the
underlying toxicity mechanisms are often unknown (3–5). Neu-
rotoxicity has been evaluated using brain-derived cells in aggregate
culture or coculture, neural stem cells, and other in vitro plat-
forms, and these studies suggest that complex neurotoxic effects
can be mimicked by incorporating cellular diversity into the model
system (16, 18–20). However, many of these studies rely on animal
cells that poorly reflect human physiology or primary human cells
that are not scalable and introduce batch variability.
Although in vitro human cellular models have historically been

hampered by inadequate access to cellular components of the
human brain, human embryonic stem (ES) cells (21) and induced
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pluripotent stem (iPS) cells (22, 23) now offer a scalable source
for tissue-specific cell types. Here, reproducible 3D neural con-
structs that incorporated vascular and microglial components were
fabricated for developmental neurotoxicity screening by culturing
precursor cells derived from the H1 human ES cell line on syn-
thetic hydrogels under defined conditions. Machine learning was
used to build a predictive model from RNA sequencing (RNA-
Seq) data for neural constructs exposed to a training set of 60 toxic
and nontoxic chemicals and then to make predictions in a blinded
trial using a set of 10 additional compounds.

Results
Cell types representing distinct components of the developing brain
were derived from the H1 human ES cell line (SI Appendix, Fig. S1)
(21), including neural progenitor cells (24), endothelial cells,
mesenchymal stem cells (25), and microglia/macrophage precursors
(SI Appendix, SI Materials and Methods). Vascular and microglial
components were incorporated into the neural constructs to mimic
the repertoire of cell types and cell–cell interactions of the de-
veloping human brain that might be susceptible to toxic exposure
(16–18). The vascular component included both endothelial cells
and mesenchymal stem cells, because mesenchymal support cells
play an important role in the maintenance and long-term stability
of vascular networks in vitro and in vivo (26). Neural tissue con-
structs were produced on peptide functionalized polyethylene gly-
col (PEG) hydrogels that were formed in 24-well Transwell inserts
using “thiol-ene” photopolymerization (SI Appendix, Fig. S1) (27,
28). For these experiments, the time point when neural progenitor
cells were seeded on the PEG hydrogels was defined as day 0. To
mimic the in vivo recruitment of blood vessels and microglia after
the initial formation of the neural tube (10–15), vascular cells and
microglia/macrophage precursors were added at day 9 and day 13,
respectively (SI Appendix, Fig. S1).
RNA-Seq was used to quantitatively assess sample reproducibility

and to identify global gene expression patterns within the neural
constructs. Replicate samples (n = 4) were characterized by Spear-
man’s correlation coefficients (ρ) ≥ 0.97 at days 16 and 21 of growth
on PEG hydrogels (Dataset S1) (29). Spearman’s rank comparisons
to RNA-Seq data for human samples from the Allen Brain Atlas
(30, 31) demonstrated that the neural constructs were most corre-
lated to early developmental time points and least correlated to later
adult time points (Dataset S1). For example, Spearman’s coefficients
for day 16 and day 21 neural constructs were higher for all com-
parisons to eight postconception week (PCW) samples ([ρ] ≥ 0.82,
all brain regions) than 30-y-old adult samples ([ρ] ≤ 0.76, all brain
regions) (30, 31). However, given the timing of our differentiation
protocol, the neural constructs likely represent developmental time
points before the earliest available RNA-Seq data (8 PCW) from the
Allen Brain Atlas (30, 31).
RNA-Seq data were then analyzed by EBSeq (32) to iden-

tify genes up-regulated within the neural constructs compared
with undifferentiated human ES cells (Dataset S2). Charac-
teristic gene ontology (GO) clusters were identified from
the resulting gene sets using the DAVID Bioinformatics Da-
tabase Functional Annotation Tool (Dataset S2) (33, 34).
Genes threefold up-regulated with an EBSeq false discovery
rate (FDR) ≤ 0.005 for day 21 neural constructs relative to
H1 ES cells were enriched within GO categories that included
neurogenesis (GO:0022008, 206 genes), forebrain develop-
ment (GO:0030900, 40 genes), hindbrain development (GO:0030902,
26 genes), synaptic transmission (GO:0007268, 112 genes), and vas-
culature development (GO:0001944, 61 genes) (Dataset S2). RNA-
Seq also identified expressed genes for phenotypes important to
neurogenesis (Datasets S2 and S3), such as GABAergic neurons
(e.g., GABA receptors), glutamatergic neurons (e.g., VGLUT2
and VGAT), cortical neurons (reelin/RELN, BRN2/POU3F2,
CTIP2/BCL11B, etc.), synaptic markers (e.g., synapsins and

synaptic vesicle components), and glial cells (GFAP, PDGFRA,
GLAST/SLC1A3, etc.) (9, 35–39).
Immunofluorescence imaging was used to investigate cellular or-

ganization within the neural constructs. Neural progenitor cells dif-
ferentiated and self-assembled into layered βIII-tubulin+ and GFAP+

cells that extended around the circumference of the neural constructs
by day 9 of culture on PEG hydrogels (SI Appendix, Fig. S2). By day
21, sample thickness varied from ∼50 μm in the center to >350 μm in
outer regions of the neural constructs (Fig. 1), where complex cellular
organization was most pronounced. Ki67+ proliferative layers (SI
Appendix, Fig. S3) and radially organized cells that expressed GFAP,
phospho-vimentin (p-VIM), and/or SOX2 were each identified
within the neural constructs (SI Appendix, Fig. S4) (9, 38, 39). Im-
munofluorescence imaging revealed markers for GABAergic neu-
rons (GABA; Fig. 2A) and glutamatergic neurons (VGLUT2; Fig.

Fig. 1. Morphological characteristics of neural constructs. Human embryonic
stem cell-derived precursor cells were cocultured on polyethylene glycol (PEG)
hydrogels in 24-well Transwell inserts. Neural progenitor cells (NPCs) were
seeded on synthetic PEG hydrogels (day 0), followed by endothelial cells (ECs)
and mesenchymal stem cells (MSCs) at day 9 and microglia/macrophage pre-
cursors (MGs) at day 13 (SI Appendix, Fig. S1). (A and B) Maximum projection
Z stack (525-μm thickness) and slice views (NIS Elements) illustrating βIII-tubulin
(green), GFAP (red), and DAPI (blue) for a day 21 neural construct. XZ and YZ
cross-sections are illustrated in the regions indicated by dashed lines. The
boxed region in A is illustrated in B. (C and D) Volume view images (NIS Ele-
ments) corresponding to (C) the full neural construct shown in A (6,300 μm ×
6,300 μm × 550 μm) and (D) the region shown in B (1,570 μm × 2,290 μm ×
300 μm). (Scale bar in A, 1,000 μm and B, 500 μm.)
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2B), and reelin+ (RELN, Fig. 2C), calretinin+ (CALB2, Fig. 2C),
Brn2+ (POU3F2, Fig. 2D), Ctip2+ (BCL11B, Fig. 2E), and Tbr1+

layers were also evident (Fig. 2E) (9, 35–37). Thus, neural pheno-
types identified by immunofluorescence imaging were in agreement
with the RNA-Seq results (Datasets S2 and S3).
Human ES cell-derived endothelial cells and mesenchymal stem

cells were added to the neural constructs after neural progenitor
cells had self-assembled into multilayers with radially organized
neural and glial populations (SI Appendix, Fig. S2) (9, 37, 38) to
mimic the recruitment of blood vessels by the neuroepithelium (15).
The neural constructs were characterized by extensive capillary
networks by day 21 (Fig. 3A; SI Appendix, Fig. S5), which associated
with radially oriented glial cells (Fig. 3 B–D) and penetrated into
neuronal layers (SI Appendix, Fig. S5) (13–15). RNA-Seq demon-
strated that the neural constructs expressed many vascular genes
[day 21: 122 genes, GO:0001944 vasculature development, tran-
scripts per million (TPM) > 16; Dataset S4], including blood-vessel–
promoting growth factors (e.g., VEGFA) that were also detected in
control samples lacking vascular cells (Dataset S3). Because factors
such as VEGF were not added exogenously, cellular signaling within
the neural constructs provided the necessary cues for the formation
of interconnected vascular networks, which is consistent with the
recruitment of capillaries by cells within the neuroepithelium (15).

Microglia/macrophage precursors were derived by differentiating
H1 ES cells through mesendoderm and hemogenic endothelium
lineages (40), which resemble early precursors in the yolk sac that
contribute to microglia in vivo (41). The microglia/macrophage
precursors were CD11b+CD14+ by FACS analysis (SI Appendix,
Fig. S1) and phagocytosed yeast particles (Movie S1). Iba1+

microglia begin to populate the human brain as early as 4.5 gesta-
tional weeks (GW), but minimally interact with early blood vessels
(11). Therefore, the microglia/macrophage precursors were added
to the neural constructs after initial vascular network assembly (11).
Characteristic microglia genes were up-regulated relative to control
samples (Fig. 4A) and were expressed at days 16 and 21 (SI Ap-
pendix, Fig. S6 and Dataset S3) when microglia/macrophage pre-
cursors were incorporated into the neural constructs (10–12).
TREM2, IBA1/AIF1, and other microglial genes were detectable
by RNA-Seq only when microglia/macrophage precursors were in-
corporated into the neural constructs (Fig. 4A). By day 21, Iba1+

cells were dispersed throughout the neural constructs (SI Appendix,
Fig. S6), associated with endothelial tubules (Fig. 4B and SI Ap-
pendix, Fig. S6), and adopted both amoeboid and ramified mor-
phologies (Fig. 4B and SI Appendix, Fig. S6) (10–12).
RNA-Seq and linear support vector machines were then used to

build a predictive model for neurotoxicity based on changes in
global gene expression by neural constructs exposed to known
toxins and nontoxic controls (Fig. 5 and SI Appendix, Fig. S7 and
Datasets S5 and S6) (42–46). Neurotoxicity was evaluated using a
set of 31 control compounds and 39 toxins with previous literature
support for toxicity (Dataset S5). Control chemicals included com-
mon food additives or pharmaceuticals with no known neurotoxicity.

Fig. 2. Neural differentiation within the neural constructs. Cryosectioned
samples illustrating neuronal phenotypes after 21 d of growth on PEG hydrogels:
(A) βIII-tubulin (red) and GABA (green), (B) βIII-tubulin (red) and VGLUT2 (green),
(C) reelin (red) and calretinin (green), (D) MAP2 (red) and Brn2 (green), and
(E) Ctip2 (green) and Tbr1 (red). (Scale bars in A–C, 50 μm and D and E, 100 μm.)

Fig. 3. Vascular network formation within the neural constructs. (A and B)
Immunofluorescence for endothelial cells (CD31, green), glial cells (GFAP, red),
and nuclei (DAPI, blue) for a day 21 neural construct. (B) Zoom of the boxed
region shown in A to illustrate association and alignment for a capillary tubule
and radially oriented glial cells (arrows). The cells in B are shown as single
channel grayscale images for (C) CD31 and (D) GFAP. [Scale bars in A, 250 μm
and B–D, 100 μm (shown in B).]

12518 | www.pnas.org/cgi/doi/10.1073/pnas.1516645112 Schwartz et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
15

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sd04.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1516645112/video-1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sd05.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sd06.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1516645112/-/DCSupplemental/pnas.1516645112.sd05.xlsx
www.pnas.org/cgi/doi/10.1073/pnas.1516645112


www.manaraa.com

Dosage was based on previous in vitro or in vivo data for toxic
and nontoxic compounds, which included blood serum concen-
trations (such as for pharmaceuticals) or previously published
screening conditions when available or set at 10 μM when data
were not available. Replicate day 14 neural constructs were contin-
uously exposed to test compounds through day 16 (2 d of exposure)
or day 21 (7 d of exposure), and then harvested for RNA-Seq
(Datasets S7 and S8) and machine learning analysis (Dataset S6).
We used two standard hold-out testing methods for evaluation

to avoid overly optimistic prediction of accuracy (45–47): (i) A
nearly unbiased (slightly pessimistic) leave-one-out cross-validation
and (ii) an unbiased blinded trial with a single hold-out set. For
leave-one-out cross-validation, there were 60 compounds in the
training set and the method proceeded in 60 steps. In each step a
different data point was held out of the training set, the support
vector machine was trained on the remaining data points, and a
prediction was made for the held-aside data point. Hence every
data point was a test case exactly once, for a model trained
without that data point. Results were aggregated over all of the
folds, or test cases, to estimate how well the support vector
machine trained on all data will perform on a new data point

(compound). Performance estimates are shown in the form of
receiver operating characteristic (ROC) curves (Fig. 5 and SI
Appendix, Fig. S7). For the second method, the unbiased blin-
ded trial used the predictive model generated from the training set
to make predictions on a separate hold-out set, including esti-
mates of accuracy and area under the ROC curve (AUC). The
leave-one-out cross-validation method has lower variance than a
single train/test split because it tests on all of the compounds of
the training set, but it is a slightly pessimistic estimate of future
performance because each training set is slightly smaller (one less)
than the actual training set.
Leave-one-out cross-validation was used to evaluate neural con-

structs exposed to a training set of 34 toxins and 26 nontoxic con-
trols (Datasets S5 and S6). The area under the ROC curves for the
training compounds were 0.86 on day 16 (SI Appendix, Fig. S7), 0.88
on day 21 (SI Appendix, Fig. S7), and 0.91 for data averaged from
both days (Fig. 5B). Thus, the support vector machine produced an
estimate of future data ≥0.86 for each day individually and 0.91
using data from two developmental time points. Additionally, a
wrapper-based approach of recursive feature elimination (48)
demonstrated that the number of genes could be reduced to 1,000
without harming accuracy (Dataset S6). Unbiased hold-out testing
was then used to predict toxicity for a set of 10 blinded compounds
that were not in the initial training set (five toxins, five nontoxic
controls, Dataset S5) and were unknown to researchers generating
the support vector machine model until after the predictions were
made. The support vector machine model was generated using the
full set of ∼19,000 genes and data were averaged from days 16 and
21 training sets to make predictions, which produced probabilities
for ranking the blinded compounds from most likely toxic to least

Fig. 4. Incorporation of microglia into neural constructs. (A) Gene expression
for neural constructs with or without microglia (Dataset S3, Quality Control
Experiments; N.D., not detected). Statistical analysis was conducted using a
Student’s t test (TPM ± SD; ***P < 0.001; n = 4 replicate samples each). (B) Iba1
(microglia, red) and CD31 (endothelial cells, green) expression for a day 21
neural construct. Microglia adopt ramified morphologies (e.g., closed arrow)
and associate with capillary tubules (e.g., open arrows). (Inset) Iba1 (red) and
DAPI (blue) expression for the cell pointed out by the closed arrow (Bottom,
Right corner) and surrounding nuclei. Image is brightened for clarity. (Scale bar,
100 μm.)

Fig. 5. Machine learning predictions. (A) A linear support vector machine
(SVM) for a 2D problem, where an (n − 1)-dimensional hyperplane reduces to a
line that separates the classes (filled vs. open circles) and maximizes the closest
points between classes (the support vectors, which fix the position and ori-
entation of the hyperplane). The xis are the examples (points in A), the yis are
their labels (filled or open in A), and w is the weight vector, or vector of co-
efficients on the features (the dimensions). The linear SVM’s output is the
weight vector w and the other coefficient b. To make a prediction, the SVM
computes the number w′xi − b, and outputs the label 0 (nontoxic, for our
application) if this number is less than 0, and 1 otherwise. The extensions re-
quired for the soft margin version of the SVM are highlighted in pink in the
equation, which minimizes the sum of the distances between incorrectly
classified training points (ξi) in addition to the margin, and is used when the
data are not linearly separable (43). (B) The ROC curves are shown for the data
averaged from days 16 (2-day dosing) and 21 (7-day dosing) (Dataset S6). The
ROC curve plots true positive rate on the y axis against the false positive rate
(1 − specificity) on the x axis as the threshold is varied (SI Appendix, SI Materials
and Methods shows additional details).
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likely toxic (Dataset S6). In addition, we used a threshold of 0.5 to
make definitive predictions, labeling every chemical with proba-
bility ≤0.5 as nontoxic and all others toxic. The area under the
ROC curve generated for the ranking of the blinded set was 0.92,
which is in agreement with the training experiment. Importantly,
all compounds except oleic acid (a false positive) were properly
assigned as toxic or nontoxic (Dataset S6). Therefore, the pre-
dictive model correctly classified 9 of 10 compounds in the
blinded trial.

Discussion
The complexity of the developing human brain complicates ef-
forts to assess developmental neurotoxicity in vitro, as the un-
derlying mechanisms may include selective cell death, delayed or
aberrant differentiation, suppressed neurotransmission, disrup-
tion of the blood–brain barrier, or modulation of inflammatory
signals by glial or microglial cells (16–20). Thus, an in vitro model
to predict human neurotoxicity needs to recapitulate a diversity of
cellular interactions during human brain development and should
be reproducible both within an experiment and between experi-
ments performed on different days or at different sites. Human ES
and iPS cells offer a consistent, scalable source for diverse neural
cell types (49), including neural precursors that differentiate and
self-assemble through mechanisms that recapitulate aspects of
brain development (50–52).
Whereas previous studies have provided impressive demonstra-

tions of the capacity for neuronal precursor cells to self-assemble
into 3D “organoids” (52), current models lack vascular and micro-
glial components and use procedures that are not easily scalable for
enhanced-throughput or standardized screening approaches. The
neural constructs described here incorporated vascular and micro-
glial components and were produced with high sample uniformity by
culturing precursors derived from the H1 human ES cell line on
chemically defined hydrogels under serum-free conditions. Matrigel
is widely used as a scaffold for organoid culture (53), but varies
between batches and is a poorly defined mixture of proteins, in-
cluding many potent growth factors and extracellular matrix com-
ponents (54). In contrast, self-assembly of precursors into neural
constructs here occurred on minimally complex PEG hydrogels
(27, 28), with the only bioactive components being matrix metal-
loproteinase (MMP)-degradable peptide cross-links permissive to
proteolytic remodeling (55) and pendant Cys-Arg-Gly-Asp-Ser
(CRGDS) peptide to promote cell adhesion (56). By producing
uniform samples with diverse features that include neuronal, glial,
vascular, and microglial populations, the 3D neural constructs
should be suitable for predicting toxicities for chemicals that target
a wide range of interactions important to brain development.
The diversity of potential mechanisms that might be disrupted

during neurodevelopment presents particular challenges when
choosing the readout for identifying a chemical compound as toxic
(5). Previously, transcriptomics approaches have been applied to
evaluate developmental neurotoxicity in vitro (57, 58), including a
“murine neural embryonic stem cell test” that was used to identify
predictive genes for 10 test compounds (58). Here, RNA-Seq and
machine learning were chosen to leverage the biological complexity
of the neural constructs by simultaneously assessing changes in
global gene expression for all cellular interactions that might be
targeted by neurotoxic chemicals. The high dynamic range for RNA-
Seq provides sensitive detection of gene expression changes for cells
within the neural constructs, even for minor cell subpopulations,
whereas linear support vector machines have previously been shown
to perform well using gene expression data (45, 46). The machine
learning model correctly identified 9 of 10 blinded chemicals as toxic
or nontoxic (with one false positive), which compares favorably with
the expected accuracy when using animal testing to predict human
neurotoxicity (7).
It has been demonstrated that accurate machine learning algo-

rithms can be constructed with significantly fewer examples (data

points or training compounds) than features (variables or genes)
(44–46), but 60 training compounds is still an exceptionally small
dataset given that ∼19,000 genes were assessed. Therefore, it is a
reasonable expectation that predictive accuracy can be improved
further by adding more toxins and controls to the training set. For
example, our day 16 model correctly predicts the training com-
pound cadmium to be toxic, but our day 21 model does not
(Dataset S6). Nevertheless, there are alternative linear separators
for day 21 data (with nearly as large margins) that would correctly
classify cadmium. Such an alternative linear separator is con-
structed for the full training set that includes cadmium, such as that
used to make predictions for the blinded compounds; this obser-
vation supports the assumption that the model would be improved
with additional training data. By expanding the training set to in-
clude additional compounds with characteristics similar to cad-
mium, the learning algorithm would construct such an alternative
linear separator even if cadmium were held out. Similar improve-
ments might be expected by including other compounds to account
for distinct toxic effects that are either underrepresented or not
represented at all with the current training set, and incorporation
of such information to improve the predictive model is a particular
advantage of our approach.
Machine learning algorithms are also dependent on training

compounds that can be definitively assigned. Therefore, initial
misclassification of a compound would result in an incorrect pre-
diction even if the machine learning algorithm makes an accurate
assessment, such as if a control compound was dosed at a toxic
concentration. For example, oleic acid was chosen as a nontoxic
control for the blinded set and was dosed at a lower concentration
than values reported for human serum (59), but was predicted to be
toxic by the machine learning algorithm. It was previously reported
that free oleic acid content transiently increases in the brains of
postnatal day 1 rats, which was correlated to a neurotrophic role
during axonogenesis (60). Thus, a potential toxic outcome for oleic
acid might arise if the neurotrophic effect is tightly regulated, be-
cause elevated expression could disrupt normal developmental
timing. This example highlights the uncertainty that limits current
efforts to predict developmental neurotoxicity, as mechanisms that
might disrupt human brain development are largely unknown, and
susceptibility to a particular chemical may be dependent on the
developmental timeframe being modeled.
The protocol described here produces neural tissue constructs

with consistent gene expression profiles that are useful for pre-
dicting neurotoxicity, but the extent to which they mimic normal
human neural development and function remains largely un-
explored. For example, whereas the neural constructs expressed
genes that were enriched for GO terms associated with mecha-
nisms of neurotransmission (e.g., synaptic transmission), func-
tional studies such as electrophysiology were not performed.
Although we were successful in promoting the self-assembly of
vascular networks within the neural constructs, the current model
does not yet include a functional, perfused blood–brain barrier.
The blood–brain barrier prevents many toxic compounds from
entering the brain, which presents challenges when choosing the
dose for chemicals in the training set using the current model. For
example, animal studies suggest that oleic acid does not cross the
blood–brain barrier at normal serum concentrations (61), and
direct application to the neural tissue could therefore explain our
false positive result. Several groups have now reported flow-based
platforms for perfusing vascular networks (62, 63). Pairing such
actively perfused devices with the vascularized 3D neural con-
structs described here may promote more advanced differentia-
tion and growth, whereas the incorporation of blood–brain
barrier function would be beneficial for investigating the delivery
of therapeutic agents and could improve the predictive accuracy
of our model by delivering toxic chemicals in a more physiolog-
ically relevant manner.
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Materials and Methods
Detailed protocols for deriving precursor cells, assembly on synthetic hydrogels,
immunofluorescence imaging, toxicity screening, RNA processing, RNA-Seq
methods, gene expression analysis, and machine learning are provided in SI
Appendix, SI Materials and Methods.
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